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Abstract – Cascade systems, consisting of a lightweight model processing all samples and a heavier, high‑ 
accuracy model reϔining challenging samples, have become a widely‑adopted distributed inference approach to 
achieving high accuracy and maintaining a low computational burden for mobile and IoT devices. As intelligent 
indoor environments, like smart homes, continue to expand, a new scenario emerges, the multi‑device cascade. 
In this setting, multiple diverse devices simultaneously utilize a shared heavy model hosted on a server, often si‑ 
tuated within or close to the consumer environment. This work introduces MultiTASC++, a continuously 
adaptive multi‑tenancy‑aware scheduler that dynamically controls the forwarding decision functions of 
devices to optimize system throughput while maintaining high accuracy and low latency. Through extensive 
experimentation in diverse device environments and with varying server‑side models, we demonstrate the 
scheduler’s efϔicacy in consistently maintaining a targeted satisfaction rate while providing the highest available 
accuracy across different device tiers and workloads of up to 100 devices. This demonstrates its scalability and 
efϔiciency in addressing the unique challenges of collaborative DNN inference in dynamic and diverse IoT 
environments.
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1. INTRODUCTION

In the last few years, there have been notable ad‑
vancements in the realm of on‑device execution for
Deep Learning (DL) inference tasks [1]. Concur‑
rently, the proliferation of indoor intelligent en‑
vironments [2], encompassing smart homes and
ofϐices, presents an opportunity for DL to facili‑
tate novel applications across a diverse range of
smart devices like IoT cameras and AI speakers.
However, due to their compact form‑factor and
energy‑consumption constraints, the majority of
these devices fall within the low‑end of the com‑
putational spectrum. Unlike high‑end smartphones
equipped with robust processors and accelerators
such as GPUs and NPUs [3], low‑end devices lack
the capability to deploy state‑of‑the‑art Deep Neu‑
ral Networks (DNNs). Consequently, they resort to
lightweight models, albeit with lower accuracy.

Considering the drawbacks associated with ofϐload‑
ing data to the cloud for inference, such as increased
bandwidth usage, latency, and privacy concerns, an
alternative strategy has been gaining ground. This
new strategy involves placing the server within or
in close proximity to the consumer environment, of‑

ten in the form of a dedicated AI hub designed to
assist nearby devices [2]. Within this framework,
cascade architectures have emerged as a notable de‑
ployment approach [4, 5, 6, 7, 8, 9]. These architec‑
tures capitalize on the inherent variability in sample
difϐiculty, opting to process only the more challeng‑
ing cases with a robust server‑based model, while
delegating the processing of simpler samples, which
typically constitute the majority of the data stream,
to on‑device execution using a lightweight model. A
substantial body of research has delved into cascade
architectures, with a primary focus on reϐining the
forwarding decision criteria and optimizing the se‑
lection of model pairs to enhance overall efϐicacy.

Despite the advancements made, the prevailing fo‑
cus of existing work has been conϐined to scenar‑
ios where a single device utilizes the server at any
given moment. This assumption is no longer appli‑
cable in the context of emerging intelligent environ‑
ments, where multiple devices concurrently under‑
take DL inference tasks with the support of a shared
AI hub [10]. This scenario introduces the novel set‑
ting of multi‑device cascade, wherein multiple de‑
vices utilize the samemodel on a shared edge‑based
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server. A system operating in this mode must ex‑
hibit scalability with regard to the number of de‑
vices, effectively balancing rapid response times and
high accuracy across the devices. Conventional ap‑
proaches, which treat each model cascade indepen‑
dently, would either lead to brute‑forcing inference
requests through the server’s resources, resulting
in system overload, or force all devices to resort to
on‑device execution, nullifying any accuracy advan‑
tages. Consequently, there is a pressing need for in‑
novative methods explicitly tailored to address the
challenges posed by a multi‑device cascade.

In this setting, the current state‑of‑the‑art work,
MultiTASC [11], introduced a multi‑tenancy‑aware
scheduling approach for multi‑device cascades.
MultiTASC proposed a scheme where forwarding
decision functions can be dynamically reconϐigured
at runtime, providing the adaptability missing from
prior cascade architectures. The decision to mod‑
ify the forwarding functions would be based on the
monitoring of the server‑hosted model’s batch size,
regarded as a metric for the server’s load. As such,
the scheduler would tune the decision functions
when the running batch size deviated from a prede‑
ϐined optimal value that was calculated during ini‑
tialization.

Despite its improvements over conventional cas‑
cade systems, MultiTASC resulted in an overly re‑
laxed policy before a certain number of devices was
reached and an excessively strict one after the in‑
ϐlux of requests became considerably high. Further‑
more, when run across multiple independent runs,
the observed systembehavior demonstratednotice‑
able variance, indicating that a more ϐine‑grained
monitoring approachwas needed to ensure a robust
deployment.

In this work, we propose MultiTASC++, a con‑
tinuously adapting multi‑tenancy‑aware scheduler
speciϐically designed to address the challenges in‑
herent in deploying multi‑device cascade architec‑
ture in high‑demand, AI‑enabled indoor spaces.
Building upon the strengths of MultiTASC, we retain
the dynamically reconϐigurable forwarding func‑
tions across client devices, aiming to control the
server’s inference request rate at runtime. Depart‑
ing fromMultiTASC, we introduce a newmethod for
tuning the decision functions that allows for more
ϐine‑grained and continuous adaptation. The key
contributions of this paper are the following:

• A systemmodel of the multi‑device cascade ar‑
chitecture. By expanding the cascade archi‑
tecture to accommodate multiple devices, our
parametrization exposes the tunable parame‑
ters and enables system designers to systemat‑
ically investigate its trade‑offs.

• A new multi‑tenancy‑aware scheduler opti‑
mized for the multi‑device cascade architec‑
ture. With its enhanced approach of re‑
conϐiguring the forwarding decision functions,
we consider each device’s latency require‑
ments independently leading tomore effective,
device‑tailored adaptation. We further intro‑
duce the continuous, rather than in discrete
steps, tuning of the decision functions, result‑
ing in ϐiner‑grained adaptability. Lastly, we
introduce server model switching, where the
server‑sidemodel can be dynamically swapped
for another with a different latency‑accuracy
trade‑off. In this manner, we add a new de‑
sign dimension in the multi‑device cascade ar‑
chitecture, further increasing its adaptability.

In the following section, we present the current 
state of AI‑focused edge computing and discuss re‑ 
lated work. In Section 3, we describe the system 
architecture in the multi‑device cascade setting as 
well as our formulation of the target problem. Sec‑ 
tion 4 presents the novel MultiTASC++ scheduler 
and its internal design, followed by the experimen‑ 
tal evaluation in Section 5. We conclude with Sec‑ 
tion 6, where we summarize the proposed approach 
and outline possible avenues for future research.

2. RELATED WORK
2.1 On‑device DNN inference
In recent years, there has been an explosion of Ar‑ 
tiϐicial Intelligence (AI) applications and services 
thanks to signiϐicant advancements in DL. These ap‑ 
plications span a wide range, from personal assis‑ 
tants and recommendation systems to autonomous 
vehicles and healthcare diagnostics. Furthermore, 
the widespread adoption of mobile computing and 
the Internet of Things (IoT) has led to billions of 
interconnected mobile and IoT devices, collectively 
generating an immense volume of data at the net‑ 
work edge [12]. This has created the need to push 
the execution of DNN applications at the edge of the 
network leading to a substantial surge in the de‑ 
ployment of DL models on resource‑constrained 
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Fig. 1 – Example of an AI‑driven smart ofϐice

devices [1]. Although on‑device training of DL 
models remains a challenging endeavor due to the 
limited computational resources and memory 
constraints of such devices, signiϐicant progress has 
been made in on‑device inference. Several 
techniques have been proposed to enable efϐicient 
on‑device inference, including:

Lightweight model design: One approach 
to enable on‑device inference is the design of 
lightweight DL models. Models like MobileNetV2 
[13], EfϐicientNet‑Lite [14] and NasNet‑Mobile 
[15] have been speciϐically crafted to achieve high
accuracy while minimizing computational and
memory requirements.
Model quantization: Quantization techniques [16]
reduce the precision of model weights and activa‑ 
tions, effectively decreasing memory and computa‑ 
tional demands without substantial loss in accuracy.
Model pruning: Pruning methods, such as chan‑ 
nel pruning [17], aim to reduce the size of DNNs
by removing unimportant neurons, thereby reduc‑ 
ing computational overhead.
Knowledge distillation: Knowledge distillation
[18] involves training a smaller, more efϐicient
model to mimic the predictions of a larger, complex
model. This allows for the transfer of knowledge
from larger models to smaller ones.
Optimized scheduling: Scheduling and runtime
optimization techniques [19] help allocate compu‑ 
tational resources efϐiciently, ensuring that DL infe‑ 
rence tasks run smoothly on constrained devices.

Despite these advancements, modern intelligent 
environments like smart homes and ofϐices are 
often equipped with small‑form‑factor, resource‑ 
constrained devices (e.g., smart cameras, AI speak‑

ers). These devices lack the processing power to 
support high‑accuracy, computationally‑intensive 
models, driving the need for distributed collabora‑ 
tive inference approaches.

2.2 Distributed collaborative inference

Distributed collaborative inference systems lever‑ 
age a central server to assist mobile and embed‑ 
ded devices in performing DL inference tasks. No‑ 
tably, the server can be strategically placed at the 
network edge, close to the devices, to minimize la‑ 
tency and optimize real‑time processing. Two pri‑ 
mary schemes have emerged in this domain: of‑ 
ϐloading and cascading.

A. Ofϔloading

Ofϐloading techniques aim to distribute the compu‑ 
tational load between the device and the server. In 
this scheme, the DNN is divided into two parts, with 
the initial part executed on the device and the latter 
part on the server. One standout contribution in this 
domain is the Neurosurgeon [20] framework, which 
focuses on the selection of a singular split point for 
ofϐloading Convolutional Neural Networks (CNNs) 
from devices to servers, with the objective of opti‑ 
mizing either latency or energy consumption. Later 
work such as [21, 22] explore the trade‑off between 
latency and accuracy that is introduced when taking 
the ofϐloading decision. [23, 24] try to address the 
ofϐloading dilemma in a progressive manner, requir‑ 
ing some training before deployment. Ofϐloading 
approaches have managed to alleviate some of the 
computational burdens on the device while main‑ 
taining the accuracy of a complex model.

©International Telecommunication Union, 202428

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024



B. Cascades

Cascade schemes involve a sequence of DNNs with 
progressively increasing complexity and accuracy. 
After processing input data through a model, a for‑ 
warding decision function determines whether to 
continue with the current result or proceed to the 
next, more complex model. [4] is one of the ϐirst no‑ 
table contributions on this approach. It introduces a 
static technique, calculating an optimized threshold 
before runtime, as well as a dynamic technique, aim‑ 
ing to optimize the threshold at runtime. The for‑ 
warding function in both techniques is deϐined by 
analyzing the differences between the softmax re‑ 
sults. From our experiments, [4] leads to polarized 
execution in the majority of cases, with the data be‑ 
ing processed either solely locally by the light model 
or on the server side by the heavy model, i.e. with‑ 
out a balanced split between device and server. [5] 
proposed a trainable forwarding criterion based on 
a neural head attached to the light model’s feature 
extractor. This approach yields great results when 
tested on a certain pair of CNNs but requires train‑ 
ing before deployment for every combination of net‑ 
works. [6] investigates the use of multiple DNN 
models going beyond two element cascades, cou‑ 
pled with the evaluation of various decision metrics. 
Additionally, solutions have been proposed to de‑ 
ploy cascades under tight energy constraints [7, 8]. 
Most of the aforementioned work focus on the i‑ 
mage classiϐication task and don’t consider the pro‑ 
blem of dynamic adaptation at runtime. The task of 
video classiϐication has also been studied [25, 26] 
and lately, the ϐirst attempts to accommodate Large 
Language Models have emerged [27].

2.3 Multi‑device cascades
Previous research on cascade architectures is pre‑ 
dominantly centered around isolated scenarios, 
where a single device enjoys exclusive access to a 
dedicated server. Nevertheless, this assumption no 
longer aligns with the reality of AI‑driven indoor en‑ 
vironments like the one in Fig. 1. The pervasive in‑ 
tegration of AI technologies has given rise to an ex‑ 
panding array of AI‑powered devices, resulting in a 
pressing demand for simultaneous support from a 
shared server.

In these complex and interconnected scenarios, a 
more nuanced examination is indispensable. Hasty 
or simplistic deployment strategies risk overload‑
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Fig. 2 – System architecture of a multi‑device cascade [11]

ing the server and causing protracted response
times. However, relying solely on local execution
can severely compromise the overall accuracy of the
system, as it misses out on the collaborative po‑
tential of cascaded processing. Thus, it becomes
evident that as we navigate the intricacies of AI‑
driven indoor environments, thoughtful strategies
are paramount to harnessing the full potential of
these technologies, optimizing both efϐiciency and
accuracy.

This paper addresses the unexplored setting of
multi‑device cascades, where multiple devices op‑
erate simultaneously, sharing an edge server assist‑
ing in the execution of DL inference tasks. This
paper provides a principled approach to tackling
the challenges of resource allocation and model
selection in this complex scenario, facilitating the
straightforward and adaptable deployment of such
an architecture.

3. MULTI‑DEVICE INFERENCE CASCADE

In Fig. 2, we present the comprehensive system ar‑
chitecture of a multi‑device cascade, speciϐically de‑
signed for executing DL inference tasks on IoT de‑
vices in a collaborative setting. Within this archi‑
tecture, all IoT devices are engaged in performing
a common task, such as object detection, albeit they
may host different DL models tailored to their com‑
putational capabilities and requirements. The main
components of this system architecture include the
following.
IoT devices: These devices are the primary end‑
points where the DL inference tasks are executed.
Each IoT device is equipped with its own DL model
designed to process incoming data efϐiciently. These
devices generate predictions independently based
on their respective models.
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Device‑hosted models: DL models on the de‑ 
vices are trained on the same task, operating in‑ 
dependently in all other aspects. Each model can 
be of different architecture, complexity and efϐi‑ 
ciency, depending on the computational resources 
and demands of the respective device. Thus, it is 
of paramount importance that the scheduler main‑ 
tains high performance in scenarios of device he‑ 
terogeneity.
Forwarding decision function: The output predic‑ 
tions generated by each IoT device are ϐirst given to 
a forwarding decision function. This decision func‑ 
tion assesses the conϐidence of the DL model’s out‑ 
put on each device. If the model is sufϐiciently conϐi‑ 
dent in its prediction, the result remains unchanged, 
and no further action is taken. However, if there is 
uncertainty or low conϐidence in the prediction, the 
sample is earmarked for further analysis.
Server: Samples that require additional scrutiny 
are forwarded to a centralized server for in‑depth 
processing. The server hosts a more accurate and 
computationally‑intensive DL model capable of re‑ 
ϐining the predictions made by the IoT devices.
Request queue: The forwarded samples from all 
IoT devices are temporarily stored in a request 
queue at the server. This queue serves as a stag‑ 
ing area where samples awaiting processing are col‑ 
lected. The request queue ensures efϐicient and or‑ 
ganized data ϐlow from the IoT devices to the server.
Server‑hosted model: The server‑side model pro‑ 
cesses the samples drawn from the request queue. 
This model is shared among all connected IoT de‑ 
vices, allowing for collaborative reϐinement of pre‑ 
dictions by leveraging the advanced ”knowledge” of 
the network.
Result distribution: Finally, the results produced 
by the server‑side model are distributed back to 
their corresponding IoT devices as soon as they be‑ 
come available. This seamless distribution of re‑ 
ϐined predictions ensures that each IoT device be‑ 
neϐits from the improved accuracy achieved by 
the server.

3.1 Single‑device cascade
Let us consider a single IoT device running a 
classiϐication‑based DL inference task. Let 𝑥∈𝒳 
be the input and 𝑦∈{1, ..., 𝐾} the classiϐication la‑ 
bel produced by the model, where 𝐾 is the num‑ 
ber of classes. The conϐidence of the given DL 
model on its output 𝑦 can be calculated by using

the decision function 𝑑(⋅). The output of 𝑑(⋅) is bi‑
nary; for 𝑑(⋅) = 0 we conclude that the model
is conϐident and therefore the result is acceptable,
whereas for 𝑑(⋅) = 1 the sample 𝑥 should be for‑
warded to the server for further processing. Denot‑
ing the classiϐication function of the light model by
𝑓𝑙 ∶ 𝒳 → [0, 1]𝐾 that yields the softmax output vec‑
tor of the model whose maximum value is the pre‑
dicted class, and the classiϐication function of the
heavy model by 𝑓ℎ ∶ 𝒳 → [0, 1]𝐾 , we formally de‑
ϐine a collaborative cascade system as:

cascfl,fh,d(x) = {fl(x) if d(fl(x)) = 0
fh(x) if d(fl(x)) = 1

3.2 Multi‑device cascade
To capture multi‑device cascade architectures
(Fig. 2), we expand the existing single‑device cas‑
cade system representation as follows. Let 𝒟 be the
set of devices assisted by the same server. Then,
the multi‑device cascade system is deϐined as:

cascfil,fh,di(x
i) = {f i

l (xi) if di(f i
l (xi)) = 0

fh(xi) if di(f i
l (xi)) = 1

∀𝑖 ∈ {1, ..., |𝒟|}
where 𝑥𝑖∈𝒳𝑖 is a sample processed by the i‑th de‑
vice, 𝑓 𝑖

𝑙 the classiϐication function of the DL model
deployed on the i‑th device, 𝑓ℎ the shared heavy
model on the server, and 𝑑𝑖(𝑓 𝑖

𝑙 (𝑥𝑖)) the forwarding
decision function of the i‑th device. Note that the
shared heavy model 𝑓ℎ, is the only variable not de‑
pending on the devices.

3.3 Congestion problem
In the case of the single‑device cascade, the server’s
computational resources are exclusively assisting a
single device, resulting in minimal response time
and preservation of accuracy. However, in the area
of IoT spaces it is increasingly important to leverage
a server’s capabilities acrossmultiple devices simul‑
taneously, hence implementing a multi‑device cas‑
cade. This approach paves the way towards amor‑
tizing the server’s cost and maximizing its utility.
Nonetheless, depending on the speciϐic conditions,
if the arrival rate of incoming requests exceeds the
server’s processing throughput capacity, the server
becomes overwhelmed, leading to extendedwaiting
times for requests in the queue.

For a given number of devices denoted by |𝒟|,
Eq. (1) expresses the arrival rate of requests to the
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server, i.e. the rate at which results are deemed as
unsatisfactory by the decision functions on the de‑
vices and are therefore forwarded to the server.

𝐴𝑅server =
|𝒟|
∑
𝑖 = 1

𝑝𝑖
casc
𝑡𝑖
inf

(1)

where 𝑡𝑖
inf is the average inference latency of a sam‑

ple on the i‑th device and 𝑝𝑖
casc is the probability of a

sample giving 𝑑𝑖(𝑓 𝑖
𝑙 (𝑥𝑖)) = 1.

Given the attainable throughput 𝑇server of the server,
we distinguish three different states:

• 𝐴𝑅server < 𝑇server: The processing rate of
the server exceeds the arrival rate, leading to
the server being underutilized. Forwarding a
greater quantity of challenging samples to the
server could enhance accuracy.

• 𝐴𝑅server = 𝑇server: A state of equilibrium
is reached, where requests are promptly pro‑
cessed upon arrival, preventing accumulation,
and ensuring full utilization of the server’s pro‑
cessing power.

• 𝐴𝑅server > 𝑇server: The rate of incoming re‑
quests surpasses the server’s processing ca‑
pacity. If this condition persists, it will result
in a substantial accumulation of requests in the
queue, leading to excessive latency.

The 𝑝𝑖
casc of the forwarding decision function is not

static since it depends on the processing order of
the samples. Therefore, this architecture involves
stochastic components at runtime and could greatly
beneϐit by dynamically adapting its state depending
on the current conditions. Since 𝑡𝑖

inf and 𝑇server are
ϐixed based on the device and server‑side proces‑
sors, we opt to manipulate 𝑝𝑖

casc by changing the pa‑
rameters of 𝑑𝑖(𝑓 𝑖

𝑙 (𝑥𝑖)) in order to introduce adapt‑
ability to the system.

3.4 Problem optimization

We frame the aforementioned setting as a multi‑ 
objective optimization problem, seeking to maxi‑ 
mize accuracy and throughput subject to a latency 
Service‑Level Objective (SLO. The following section 
describes our proposed scheduler designed to ad‑ 
dress it.

4. PROPOSED SCHEDULER

To address the challenges related to request accu‑ 
mulation and efϐicient server resource utilization, 
we introduce MultiTASC++, a multi‑tenancy‑aware 
scheduler that dynamically adapts the arrival rate 
of samples from the assisted devices. Based on 
our previous work, MultiTASC, we kept the com‑ 
ponent of reconϐigurable forwarding decision func‑ 
tions to control the arrival rate and introduced four 
new techniques that completely change the way 
the thresholds are updated: i) SLO satisfaction rate 
updates, ii) continuous threshold reconϐiguration, 
iii) threshold scaling, and iv) server model switch‑ 
ing. MultiTASC++’s internal architecture is pre‑ 
sented in Fig. 3 where all new techniques are visible.

4.1 Reconϐigurable forwarding decision 
function

Signiϐicant research endeavors have been dedicated 
to assessing the prediction conϐidence of DNNs, re‑ 
sulting in the development of various approaches [6, 
31]. In this work, we employ the Best‑versus‑ 
Second‑Best (BvSB metric [32], which quantiϐies 
prediction conϐidence by computing the difference 
between the top two values in the softmax output of
the model (referred to as 𝑃1 and 𝑃2), as shown in 
Eq. (2). These values correspond to the highest and
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Table 1 – Evaluated DNNmodels

Model Location Device Clock Rate Accuracy Latency FLOPs #Params

MobileNetV2 [13] Low‑end Sony Xperia C5 1.69 GHz 71.85% 31 ms 0.6 B 3.5 M
EfϐicientNetLite0 [14] Mid‑tier Samsung A71 2.20 GHz 75.02% 43 ms 0.8 B 4.7 M
EfϐicientNetB0 [14] High‑end Samsung S20 FE 2.73 GHz 77.04% 33 ms 0.8 B 5.3 M
MobileViT‑x‑small [28] High‑end Google Pixel 7 2.85 GHz 74.64% 57 ms 1.1 B 2.3 M
InceptionV3 [29] Server Tesla T4 GPU 585 MHz 78.29% 15 ms 11.4 B 23.8 M
EfϐicientNetB3 [14] Server Tesla T4 GPU 585 MHz 81.49% 25 ms 3.7 B 12.2 M
DeiT‑Base‑Distilled [30] Server Tesla T4 GPU 585 MHz 83.41% 14 ms 7.7 B 86.0 M

* See Table 1 in [1] for the detailed resource characteristics of the target mobile phones.

second‑highest classes that the classiϐier predicted.

BvSB∣
𝑓(𝑥)

= 𝑃1 − 𝑃2 (2)

Other metrics, such as top‑1 softmax or entropy can
be implemented in the system with minimal mod‑
iϐications, potentially leading to different latency‑
accuracy trade‑offs.

In contrast to the predominant approach employed
by most existing cascade systems, which establish
ϐixed decision thresholds during design and main‑
tain them upon deployment, our work introduces
an alternative approach. We adopt a dynamic recon‑
ϔiguration scheme for the decision function to cater
to the adaptability requirements of our target sys‑
tem. The decision function 𝑑𝑖(⋅) is deϐined as shown
in Eq. (3), with adjustments facilitated by a dynamic
scheduler that ϐine‑tunes its parameters at runtime.

𝑑𝑖(𝑓 𝑖
𝑙 (𝑥)) =

⎧{
⎨{⎩

0 if BvSB∣
𝑓𝑖

𝑙 (𝑥)
≥ 𝑐𝑖,𝑡

1 if BvSB∣
𝑓𝑖

𝑙 (𝑥)
< 𝑐𝑖,𝑡

(3)

where 𝑐𝑖,𝑡 is the decision threshold of device 𝑖 at
time 𝑡. The per‑device decision thresholds are
exposed to our server‑residing scheduler, which
adapts them at runtime.

4.2 SLO satisfaction rate updates
Given a latency target, we introduce the SLO sat‑
isfaction rate metric as the percentage of samples
successfully processed within the designated la‑
tency constraint. Latency, in this context, is mea‑
sured from the initiation of inference on the de‑
vice until the ϐinal result is obtained, either by the
device‑hosted model or the server‑side model in
the cases where the sample is forwarded to the

server. The SLO satisfaction rate relies signiϐicantly
on the timely processing of samples forwarded to
the server, a factor inϐluenced by the volume of sam‑
ples that the server must handle.

The SLO satisfaction rate is the main metric we
use to measure the smooth operation of the system
since a high satisfaction rate can be a good indicator
of a responsive queue without congestion. By hav‑
ing a metric that helps us understand the state of
the system during runtime, we can tune the inϐlux
of samples with high precision by adjusting the re‑
conϐigurable forwarding decision functions of each
device individually.

Each device calculates the average SLO satisfaction
rate during its inference in time windows of 𝑇 sec‑
onds. At the end of every time window, the satisfac‑
tion rate for that window is forwarded to the server
where the appropriate reconϐiguration of the deci‑
sion function is calculated. By constantly informing
the server about the satisfaction rate, we achieve a
beneϐicial trade‑off of accuracy in order to maintain
the desired SLO satisfaction rate.

4.3 Continuous threshold reconϐiguration
Every 𝑇 seconds, the device sends an SLO satisfac‑
tion rate update to the scheduler. Assuming there is
a target SLO satisfaction rate valuedepending on the
user’s needs, if the update value is below that opti‑
mal value, the server chooses to reduce the number
of samples coming from that device. Otherwise, if
the update value is greater than the designated op‑
timal value, the server chooses to increase the inϐlux
of samples from that device to achieve a higher ac‑
curacy.

MultiTASC++ leverages the information available
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through the SLO satisfaction rate updates to view
the forwarding decision thresholds as continuous
variables. This allows for incredible precision in its
ability to identify the optimal threshold for the situ‑
ation and pair ofmodels, as well as rapid adaptation
when needed. The completely revamped update
rule is presented in Eq. (4) and is in stark contrast
toMultiTASC’s [11] update rulewhere the scheduler
had to guess the optimal inϐlux of samples and then
use a very slow and imprecise step based approach
to converge to it.

Δ𝑡ℎ𝑟𝑒𝑠ℎ = −𝑎 ⋅ (𝑆𝑅target − 𝑆𝑅update) (4)

where Δ𝑡ℎ𝑟𝑒𝑠ℎ is the amount by which the thresh‑ 
old will be adjusted, 𝑆𝑅t arget is the target SLO satis‑ 
faction rate for that device, 𝑆𝑅update is the SLO sa‑ 
tisfaction rate sent by the device and 𝑎 is a scaling 
factor.

4.4 Threshold scaling
The update rule presented in Eq. (4) demonstrates 
robust performance in cases where the optimal 
threshold is either lower or close to the initial 
threshold of the device. However, its responsive‑ 
ness diminishes when facing scenarios characte‑ 
rized by substantial underutilization of server re‑ 
sources, necessitating a rapid threshold increase. 
To accommodate such cases, we introduced a scal‑ 
ing component to the threshold update. Alg. 1 
presents the proposed approach. Following the 
threshold update from Eq. (4), the updated thresh‑ 
old is subsequently either scaled by a multiplier 𝑚 
(line 4) if the threshold was increased with the up‑
date (i.e. 𝑆𝑅update > 𝑆𝑅t arget), or stays the same 
otherwise. In the ϐirst case, 𝑚 is then updated by 
the rule shown in line 9 while in the second case it 
is reset to 1. Since for a large number of devices the 
multiplier is not required, we further incorporate a 
penalty term (line 9) that considers the number of 
devices currently active in the system, denoted by 
𝑛 (line 5).

4.5 Server model switching
To further improve the adaptability of MultiTASC++, 
we introduce the server model switching feature. 
Depending on the dynamic conditions, the sched‑ 
uler can decide to switch to a different server‑ 
hosted model whose computational cost‑accuracy 
trade‑off better suits the current state. For instance, 
if a heavy model is being used and the optimal SLO

Algorithm 1Multiplier Implementation
Input:
1: 𝑆𝑅target ▷ The targeted satisfaction rate
2: 𝑆𝑅update ▷ The device’s satisfaction rate
3: 𝑡ℎ𝑟𝑒𝑠ℎupdated ▷ The updated threshold
4: 𝑚 ▷ Previous multiplier
5: 𝑛 ▷ Number of active devices
Output:
6: 𝑡ℎ𝑟𝑒𝑠ℎϐinal ▷ Τhreshold sent to device
7: if 𝑆𝑅target < 𝑆𝑅update then
8: 𝑡ℎ𝑟𝑒𝑠ℎϐinal = 𝑚 ⋅ 𝑡ℎ𝑟𝑒𝑠ℎupdated
9: 𝑚 = 𝑚 ⋅ (1 + 0.1

𝑛 )
10: else
11: 𝑡ℎ𝑟𝑒𝑠ℎϐinal = 𝑡ℎ𝑟𝑒𝑠ℎupdated
12: 𝑚 = 1
13: end if

𝑘

satisfaction rate can’t be maintained without signi‑ 
ficantly dropping the accuracy, MultiTASC++ opts to 
switch to a faster model to allow for a greater inϐlux 
of samples. On the opposite, if a faster model is be‑ 
ing used but the system is low load, resulting in un‑ 
derutilization of the server, MultiTASC++ chooses to 
switch to a heavier model to achieve a higher accu‑ 
racy without sacriϐicing the SLO satisfaction.

The scheduler makes a decision by examining the 
current thresholds of the devices. To switch from a 
heavy model to a faster one, every device’s thresh‑ 
old in a single tier must be below a certain value. On 
the other hand, to switch from the fast model to the 
heavier one, every device’s threshold must be above 
a certain value depending on its tier.

Given the set of all device thresholds 𝒞 consisting 
of elements 𝑐𝑖 ∈ [0, 1],  where 𝑘 is the device tier 
(i.e. 𝑘 ∈ 𝒦 = {𝑙𝑜𝑤, 𝑚𝑖𝑑, ℎ𝑖𝑔ℎ})  and 𝑖 ∈ 𝒟𝑘 corres‑ 
ponds to the i‑th device in this tier, we can deϐine 
the model switch decision as follows: for 𝑆(𝒞) = −1 
a switch to a faster model is needed, for 𝑆(𝒞) = +1 a 
switch to a heavier model is needed and for 𝑆(𝒞) = 
0 the current model is the optimal. Formally:

𝑆(𝒞) =
⎧{
⎨{⎩

−1 if ∃ 𝑘 ∈ 𝒦 ∶ 𝑐𝑘
𝑖 < 𝑐lower, ∀ 𝑖 ∈ 𝒟𝑘

+1 if 𝑐𝑘
𝑖 > 𝑐𝑘

upper, ∀𝑘 ∈ 𝒦, ∀ 𝑖 ∈ 𝒟𝑘

0, otherwise

Upper and lower limits 𝑐𝑘
upper and 𝑐lower are set af‑

ter a thorough examination of cascade results on a
training set.
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Models and datasets: In our experiments, we tar‑ 
get the task of image classiϐication with 1k classes. 
Concretely, we used the 50k‑images validation set 
of the ImageNet dataset [35]. Table 1 presents the 
evaluated models, as well as their accuracy and in‑ 
ference latency on the different execution points. 
We obtained the CNN models from TensorFlow 
Hub while the transformer models from Hugging 
Face. All models are pretrained on ImageNet’s train‑ 
ing set. We deploy MobileNetV2, EfϐicientNetLite0 
and EfϐicientNetB0 to the low, mid and high‑end 
client devices respectively. On the server side, 
we use InceptionV3 and EfϐicientNetB3 to explore 
the differences between a lower‑accuracy, higher‑ 
throughput model and a higher‑accuracy, lower‑ 
throughput model, respectively.

We also evaluated our scheduler using transformer 
models both as device and server‑hosted models. 
We deployed MobileVit‑x‑small on Google Pixel 7 
and DeiT‑Base‑Distilled on the server. As the trans‑ 
former architecture has only recently started gain‑ 
ing traction, available models are not as efϐicient 
as their CNN counterparts on most mobile devices. 
As such, we utilize a computationally‑powerful ϐlag‑ 
ship phone, like Pixel 7, to achieve acceptable la‑ 
tency. Nevertheless, as transformer models become 
more efϐicient [36], they are expected to soon be‑ 
come broadly deployed across mobile devices.

Evaluation settings: To assess our system across 
deployment setups, we focused on two distinct 
cases: i) a homogeneous scenario, which comprises 
devices of equal processing capabilities that host 
the same local model, and ii) a heterogeneous sce‑ 
nario, which comprises devices of diverse process‑ 
ing capabilities, with each device hosting a model 
tailored to its respective tier. We also conduct ex‑ 
periments as part of the homogeneous scenario to 
evaluate the transformer models, the server model 
switching technique, as well as a scenario that e‑ 
mulates a realistic setting of intermittent device 
participation, i.e. where devices drop in and out 
during inference.

For general evaluation in the homogeneous sce‑ 
nario, all devices are of the same tier, using Sony 
Xperia C5 Ultra with MobileNetV2. We selected this 
tier, as it represents the conϐiguration with the  
minimum latency, thereby imposing the greatest 
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5. EVALUATION

5.1 Experimental setup
To evaluate the performance of MultiTASC++, we 
built a prototype in Python 3.9 utilizing TensorFlow 
2.9.1. The edge server component hosts an NVIDIA 
Tesla T4 GPU, Intel(R) Xeon(R) 2.30GHz CPU and 
12GB of RAM, allowing it to run heavy, state‑of‑the‑ 
art models with high accuracy within the evaluated 
latency targets. On the device components’ side, we 
used mobile devices spanning three different tiers, 
namely high, mid, and low‑end, using Samsung S20 
FE, Samsung A71 and Sony Xperia C5 Ultra, respec‑ 
tively. We also used the Google Pixel 7 as a high‑end 
device for the purpose of evaluating transformer 
models. For on‑device execution, we used Tensor‑ 
Flow Lite and targeted the CPU of the respective mo‑ 
bile device, as it is still the most widely‑used ap‑ 
proach [3, 33].

Different models were chosen for each tier, with the 
aim of having the highest accuracy possible while 
taking into account the device’s computational re‑ 
sources. We measured the average inference la‑ 
tency of each model on the respective device across 
200 runs with a batch size of 1. We followed the 
same process to measure the average server infe‑ 
rence latency across different batch sizes and 
used this data to conduct simulation‑based 
experiments. The experiments targeted a variety of 
scenarios and mainly focused on the SLO latency 
target and accuracy metrics. Communication 
between the devices and the edge server 
component was established using the AMPQ 
protocol, following the widely‑used practice for 
communication between IoT devices. The protocol 
was implemented through the AMPQS‑ torm library 
which allows for thread‑safe execution.

To fully take advantage of the server’s computa‑ 
tional resources and boost throughput, it is impor‑ 
tant to use batching, i.e. processing multiple sam‑ 
ples at the same time. To avoid the latency that 
would arise from waiting for the request queue to 
reach a speciϐic batch size, we employ dynamic 
batching [34]. With dynamic batching, we use the 
maximum batch size that is feasible with the cur‑ 
rent request queue length. Available batch sizes are 
ℬ={1, 2, 4, 8, 16, 32, 64}. Due to diminishing re‑ 
turns, in some cases we use a lower maximum 
batch size, e.g. with EfϐicientNetB3 a batch size of 
16 provides a higher throughput and lower la-
tency than a batch size of 32 and above.
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Fig. 4 – SLO satisfaction rate for InceptionV3 ‑ MobileNetV2
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Fig. 5 – Accuracy for InceptionV3 ‑ MobileNetV2
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Fig. 6 – Throughput for InceptionV3 ‑ MobileNetV2

challenge on the scheduler. Additionally, it 
accentuates the substantial disparity in accuracy 
between the device‑hosted model and the full 
cascade accuracy, effectively showcasing the 
cascade architecture’s potential. In the 
heterogeneous scenario, all three tiers of devices 
were deployed in equal percentage. Finally, to 
assess the scheduler’s performance when using 
transformer models, we used a separate tier of 
Pixel 7 devices running MobileViT‑ x‑small.

In all scenarios but one, the dataset of each device 
consisted of 5000 randomly selected samples from 
the last 40000 images of ImageNet’s validation set. 
The exception consisted of a distinct scenario where

the dataset consisted of only 1000 samples. We fol‑
lowed this approach in order to more clearly high‑
light a limitation of MultiTASC [11] where the SLO
satisfaction ratewas below its required value due to
slow convergence of the threshold reconϐiguration.
As shown later in Fig. 10, MultiTASC++ alleviates ef‑
fectively this issue.

Three different seeds were used to sample the data
and the average values of each metric, alongside
their minimum and maximum, are reported. The
metrics used for the evaluation are: the system
throughput capturing the system’s processing rate
in samples/s, the average accuracy across devices,
the latency SLO satisfaction rate for 100, 150 and
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Fig. 7 – SLO satisfaction rate for EfϐicientNetB3 ‑ MobileNetV2
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Fig. 8 – Accuracy for EfϐicientNetB3 ‑ MobileNetV2
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Fig. 9 – Throughput for EfϐicientNetB3 ‑ MobileNetV2

200ms SLOs, and the scalability in terms of number
of devices.

Baselines: As a baseline, we use Static, a sched‑
uler with statically selected thresholds that remain
ϐixed during runtime. To tune the static threshold,
we use the ϐirst 10000 images of ImageNet’s valida‑
tion set as our calibration set and evaluate all cas‑
cade model pairs in terms of accuracy and forward‑
ing probability. As such, we tune the threshold so
that approximately 30% of samples are forwarded
to the heavy model, providing a balanced accuracy‑
latency trade‑off. In cases where that threshold
yielded an accuracy loss of more than 1 pp com‑
pared to the highest achievable cascade accuracy,

we used the lowest threshold that satisϐied the 1 pp
limit. This baseline is equivalent to a set of state‑
of‑the‑art cascades [5, 6, 9]. We also compare with
MultiTASC [11], which constitutes the current state‑
of‑the‑art scheduling method for multi‑device cas‑
cades.

5.2 Evaluation of performance
In this section, we assess the performance of our
scheduler compared to Static and MultiTASC across
all scenarios. We set the target SLO value to 95,
meaning that we aim for 95% of samples to ϐinish
inference within the latency target, independent of
whether they are forwarded to the server or stay
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Fig. 10 – EfϐicientNetB3 ‑ MobileNetV2 with 1000 samples

on the device. We do not aim for 100% so that 
the system has some leeway to trade SLO satisfac‑ 
tion rate percentage for accuracy. Here, we high‑ 
light a signiϐicant improvement introduced by Mul‑ 
tiTASC++. Our new scheduler allows us to set and 
consistently maintain a target satisfaction rate re‑ 
gardless of the prevailing conditions, addressing a 
limitation present in MultiTASC.

We also set the time window 𝑇 to 1.5 s and the scal‑ 
ing variable 𝑎 of the continuous threshold to 0.005. 
Compared to MultiTASC, the amount of variables 
to initialize and the computational effort required 
to determine their values have notably decreased. 
This streamlines the scheduler’s deployment pro‑ 
cess, while delivering substantially improved and 
consistent results. Furthermore, the new contin‑ 
uous threshold update scheme allows for the SLO 
targets to be chosen independently for each de‑ 
vice, contrasting MultiTASC where all devices had to 
agree on the same latency target during the initia‑ 
lization of the scheduler.

A. Homogeneous scenario

Fig. 4 shows the SLO satisfaction rate as the num‑ 
ber of devices increases with InceptionV3 hosted on 
the server. The ϐigure includes the MultiTASC++, 
Static and MultiTASC approaches. Notably, Multi‑ 
TASC++ manages to consistently maintain the sat‑ 
isfaction rate close to or above 95%. In contrast, 
Static experiences rapid degradation, with the ma‑ 
jority of the results of the forwarded samples not re‑ 
turning within the latency target for 25‑40 devices 
and above. On the other hand, MultiTASC exhibits 
a dip in the range of approximately 5 to 40 devices, 
followed by an overcorrection that achieves a 100%
satisfaction rate resulting in a needless degradation

in accuracy. This dip occurs due to MultiTASC opting 
to use batch size as a metric for congestion, which 
proves to be suboptimal. Pairing that with a static 
step update rule, the scheduler was neither able to 
accurately predict the state of the system nor adapt 
with the speed that is required in borderline system 
states. This is mitigated in MultiTASC++, where the 
scheduler is more accurately aware of the state of 
the system through the SLO updates from the de‑ 
vices (Section 4.2), while also being able to adapt 
more quickly through the techniques of continuous 
threshold reconϐiguration (Section 4.3) and thresh‑ 
old scaling (Section 4.4).

Fig. 5 presents the full cascade’s accuracy in com‑ 
parison to the baselines as the number of devices in‑ 
creases. MultiTASC++ effectively strikes a better ba‑ 
lance between accuracy and the maintenance of 
the desired 95% SLO satisfaction rate. In 
comparison to Static, MultiTASC++ achieves a 
higher accuracy for a smaller number of devices 
where the server is being underutilized, while for 
larger amounts of devices, it chooses to trade off 
accuracy in order to sustain the satisfaction rate. 
Importantly, even though the accuracy is lower 
compared to the static approach, it is still 
substantially higher than the device‑hosted model’s 
accuracy, justifying the use of a cascade ar‑ 
chitecture. Compared to MultiTASC, our scheduler 
achieves higher accuracy across all cases, with the 
exception of the instances where MultiTASC’s satis‑ 
faction rate performance (Fig. 4) dips below the de‑ 
sired 95%.

Fig. 6 shows the system throughput difference be‑ 
tween MultiTASC++ and Static as the number of de‑ 
vices increases. This ϐigure shows the need for dy‑ 
namic runtime adaptation, since, while Static stag‑ 
nates at 1000 samples per second, MultiTASC++
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Fig. 11 – SLO satisfaction rate for InceptionV3 ‑ different devices

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

Low-End SLO 100ms

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

Mid-Tier SLO 100ms

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

High-End SLO 100ms

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

Low-End SLO 150ms

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

Mid-Tier SLO 150ms

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

High-End SLO 150ms

Light Model
Static
MultiTASC
MultiTASC++

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

Low-End SLO 200ms

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

Mid-Tier SLO 200ms

0 20 40 60 80 100
Number of Devices

72

74

76

78

80

High-End SLO 200ms

Fig. 12 – Accuracy for InceptionV3 ‑ different devices

manages to keep the linear increase of system
throughput as the number of devices rises for all
SLO targets.

Fig. 7 and Fig. 8 depict the achieved SLO satisfaction
rate and accuracy, when EfϐicientNetB3 is deployed
on the server. A similar dip to the one in Fig. 4
can be observed for MultiTASC, between approxi‑
mately 5 and 20 devices. The dips in both ϐigures
reach values as low as 80%, which represents unac‑
ceptable delays in 15pp more samples than the tar‑
get. We can also observe a more signiϐicant differ‑

ence in accuracy, especiallywhen targeting a 100ms
SLO, due to the lower attainable throughput of the
heavier EfϐicientNetB3. Notably, even with a sub‑
stantial number of devices, the collaborative cas‑
cade architecture, when paired with MultiTASC++,
signiϐicantly improves upon the accuracy of the on‑
device model while preserving consistent respon‑
siveness. In contrast to MultiTASC, besides optimiz‑
ing the trade‑off between satisfaction rate and accu‑
racy, our approach also minimizes the variance be‑
tween different seed runs, a crucial element in en‑
suring a robust high‑quality service. Fig. 9 shows
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Fig. 13 – SLO satisfaction rate for EfϐicientNetB3 ‑ different devices
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Fig. 14 – Accuracy for EfϐicientNetB3 ‑ different devices
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Fig. 15 – SLO satisfaction rate for DeiT‑Base‑Distilled ‑ MobileViT‑x‑small
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Fig. 16 – Accuracy for DeiT‑Base‑Distilled ‑ MobileViT‑x‑small

similar results to Fig. 6, where Static converges to a 
system throughput of around 300 samples per se‑ 
cond while MultiTASC++ manages to maintain 
a linear increase of system throughput as the 
number of devices increases.

Fig. 10 shows the SLO satisfaction rate and accu‑ 
racy trends with an increasing number of devices, 
utilizing a reduced dataset of 1000 samples, as op‑ 
posed to the previous 5000 and with a lenient 
150 ms SLO. A noticeable distinction becomes 
apparent when comparing the evaluated 
approaches. MultiTASC converges slowly to a 
threshold that satisϐies the SLO, evident by the 
results between 10 to 20 devices, where the 
satisfaction rate reaches a low point of 75%. In 
contrast, MultiTASC++ consistently delivers nearly 
identical results to those observed in the prior 
experiment.

B. Heterogeneous scenario
Fig. 11 and Fig. 12 present a comprehensive 
comparison of SLO satisfaction rate and accuracy 
across MultiTASC++, MultiTASC, and Static in a 
heterogeneous device environment. In this 
setting, InceptionV3 serves as the server‑side 
model. We report the performance metrics 
separately for each device tier.

Similar to the homogeneous scenario, our obser‑ 
vations underscore the limitations of the static ap‑ 
proach, which experiences a critical failure beyond a 
certain number of devices. Conversely, both Mul‑ 
tiTASC++ and MultiTASC effectively maintain high 
satisfaction rates. Notably, our proposed sche‑ 
duler exhibits superior consistency and efϐiciency in 
trading accuracy for satisfaction rate, as it 
robustly maintains satisfaction rates precisely at the 
targeted level. MultiTASC, while providing 
operational viability compared to Static for 
more devices, it also introduces significant variance 

that can undermine the quality of service. 
Additionally, it does not effectively utilize the 
given satisfaction rate allowance, resulting in 
lower accuracy levels than potentially achievable.

Furthermore, MultiTASC++ mitigates the dip ex‑ 
perienced by MultiTASC within the range of ap‑ 
proximately 5 to 40 devices. In particular, when 
it comes to mid and high‑end tier devices, Mul‑ 
tiTASC++ achieves signiϐicant accuracy gains over 
MultiTASC, while accuracy remains relatively con‑ 
sistent for low‑end devices between both sched‑ 
ulers.

Fig. 13 and Fig. 14 present the same compari‑ 
son with EfϐicientNetB3 as the server‑side model. 
The results and conclusions obtained are similar to 
those from the previous experiment, where Incep‑ 
tionV3 was the server model.

However, it is worth emphasizing that the variance 
and ϐluctuations observed in MultiTASC’s satisfac‑ 
tion rate are even more pronounced in this sce‑ 
nario. In terms of accuracy, MultiTASC achieves a 
higher accuracy with low‑end devices, particularly 
in the range of 0 to 15 devices, but subsequently 
lags behind, mirroring the patterns observed in mid 
and high‑end devices. This phenomenon can be 
attributed to the low‑end devices’ lower latency, 
which signiϐicantly contributes to congestion, ne‑ 
cessitating faster threshold adjustments. It is also 
worthy to note that MultiTASC++ achieves a higher 
accuracy for light devices when it comes to larger 
numbers of devices.

C. Evaluation on transformers

Fig. 15 and Fig. 16 offer an examination of SLO sat‑ 
isfaction rates and accuracy in response to an in‑
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Fig. 17 – Model switching with InceptionV3 initialization

14 16 18 20 22 24 26 28 30
Number of Devices

94.5

95.0

95.5

96.0

96.5

97.0

SL
O 

sa
tis

fa
ct

io
n 

ra
te

 (%
)

SLO 150ms

Target
without Model Switching
with Model Switching

14 16 18 20 22 24 26 28 30
Number of Devices

75.0

75.5

76.0

76.5

77.0

77.5

78.0

78.5

79.0
Ac

cu
ra

cy
 (%

)
Accuracy

Fig. 18 – Model switching with EfϐicientNetB3 initialization
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Fig. 19 – MultiTASC++’s behavior under intermittent device participation with dynamic threshold

creasing number of devices using MultiTASC++ and
Static. In this scenario, the device model is the
mobile‑grade MobileViT‑x‑small transformer, while
the server model is DeiT‑Base‑Distilled.

The outcomes closely resemble those observed in
previous scenarios, showcasing the ability of our
scheduler to generalize to transformer architec‑
tures, even though its design was not tailored to
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them. Any apparent disparities in the results com‑ 
pared to the CNN‑based experiments can be at‑ 
tributed to differences in inference latencies and 
model accuracies.

D. Evaluation of model switching

Fig. 17 presents a comparative analysis of the SLO 
satisfaction rate and accuracy with the server model 
switching feature enabled and disabled. The sche‑ 
duler is initialized with the InceptionV3 model, 
targeting a 150 ms latency. Up to 12 devices, 
during runtime MultiTASC++ decides to switch to 
a heavier model, namely EfϐicientNetB3. This 
achieves a substantially higher accuracy while 
keeping the satisfaction rate above the 95% 
target. For 14 devices and above, the switch is 
no longer efϐicient and InceptionV3 is used 
across all samples. We should note here that the 
model switching feature was not used in previous 
experiments so that our update rule could be 
fairly evaluated against Multi‑TASC without other 
techniques affecting the performance.

Fig. 18 shows a similar evaluation for the sche‑ 
duler, with the server‑side model initialized to 
EfϐicientNetB3 and targeting a 150 ms latency. 
Once again, the satisfaction rate consistently 
exceeds the 95% target, accompanied by an 
observable accuracy enhancement when the 
model switches to InceptionV3. In scenarios 
featuring 14 and 16 devices, model switching does 
not occur, leading to outcomes similar to 
instances without model switching.

E. Intermittent device participation

In this experiment, we emulate a realistic setting 
where 20 devices run simultaneously, each bear‑ 
ing a 50% probability of going ofϐline. We target 
low‑tier devices with EfϐicientNetB3 as the server‑ 
hosted model. The point at which a device goes 
ofϐline follows a normal distribution with a mean 𝜇 
= 𝑁/2 and a standard deviation 𝜎 = 𝑁/5 where 𝑁 
is the total number of samples. The duration for 
which a device remains ofϐline adheres to an alpha 
distribution with a shape parameter 𝛼 = 60 se‑ 
conds.

Fig. 19 shows an overview of the dynamics in this 
experiment. It illustrates the ϐluctuation in the num‑ 
ber of active devices over time, the average thresh‑ 
old maintained across devices, the running SLO sa‑

tisfaction rate, and the average running accuracy 
for the currently active devices. We note that the 
percentage of active devices, the average threshold, 
and the running satisfaction rate are represented 
on the left y‑axis scale, while the running accuracy is 
on the right y‑axis scale. Several key observations 
emerge from this visualization.

First, we notice an inverse correlation between the 
threshold and the number of active devices. Ini‑ 
tially, the threshold rapidly decreases to accommo‑ 
date the need for maintaining the satisfaction rate. 
Subsequently, as the number of active devices di‑ 
minishes, the threshold is increased.

Furthermore, a direct correlation is observed be‑ 
tween the increase in threshold and the gain in run‑ 
ning accuracy. This emphasizes the trade‑off me‑ 
chanism facilitated by the scheduler to optimize 
system performance.

Notably, the running SLO satisfaction rate consis‑ 
tently maintains a level exceeding approximately 
95% throughout the duration of the experiment, un‑ 
derlining MultiTASC++’s effectiveness in ensuring 
the fulϐillment of the speciϐied service‑level objec‑ 
tives.

Fig. 20 shows the results of another experiment 
with different initializations when it comes to de‑ 
vices, leading to a different plot line representing 
the number of active devices compared to the pre‑ 
vious experiment. In this scenario, however, a static 
threshold is employed. The results from this expe‑ 
riment unveil several insights.

The utilization of a static threshold, set at 0.35, 
engenders relatively stable running accuracy, as a 
completely static running accuracy is not realistic. 
However, it is accompanied by a notable variability 
in the running satisfaction rate, consistently falling 
well below the 95% target. This observation under‑ 
lines the critical role played by a dynamically adap‑ 
tive threshold in ensuring that SLOs are met.

Both the running accuracy and the running satis‑ 
faction rate eventually converge at approximately 
250 seconds when the devices complete their infer‑ 
ence tasks. Meanwhile, the threshold and the num‑ 
ber of active devices continue to vary. This diver‑ 
gence arises due to extensive congestion within the 
request queue, resulting in a delay of approximately 
30 seconds between the devices completing their in‑
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Fig. 20 – MultiTASC++’s behavior under intermittent device participation with static threshold

ference and the server’s return of all requested re‑
sults. Since approximately 50% of the devices do
not go ofϐline, we expect the number of active de‑
vices to drop in half at around 155 seconds where
their inference ϐinishes. While this can be observed
in Fig. 19 where the system remains responsive due
to MultiTASC++, in the case of Fig. 20 this does not
happen. This is due to the congestion in the request
queue and the devices staying connected, waiting
for the results to return from the server.

Overall, this examined scenario further highlights
the beneϐit of dynamic threshold adaptation during
runtime, particularly in settings characterized by
evolving conditions and varying system demands.

6. CONCLUSION

In this paper, we presentedMultiTASC++, a dynamic
schedulerdesigned to address the challengesof con‑
gestion in collaborative DNN inference involving a
multitudeof IoTdevices in indoor intelligent spaces.
By introducing the concept of the multi‑tenant cas‑
cade, we have achieved continuous dynamic adap‑
tation of threshold values, optimizing the trade‑off
between accuracy and service‑level objectives dur‑
ing runtime.

Our experimental evaluation, spanning diverse de‑
vice environments and server‑side models, has
demonstrated the efϐicacy of our dynamic sched‑
uler. Moreover, these experiments comparing Mul‑

tiTASC++ to our old implementation, led us to the 
conclusion that the SLO satisfaction rate updates are 
critical for precisely adhering to the targets set by 
each device. Equally essential is the adoption of con‑ 
tinuous threshold values, paired with a method de‑ 
signed to counteract slow updates, for the scheduler 
to achieve its full potential. The harmonic coopera‑ 
tion between all of these components led to a sche‑ 
duler characterized by its consistent ability to 
maintain the satisfaction rate that is targeted, as 
well as allowing for system throughput to scale, 
while simultaneously enhancing performance 
across various device tiers and workloads, 
surpassing the abilities of its predecessor, 
MultiTASC.

Moreover, the implementation of model switching 
has proven effective, allowing for the scheduler to 
adapt to scenarios where a different server‑hosted 
model leads to greater efϐiciency.

Lastly, by emulating a realistic deployment scenario 
with intermittent partial participation of devices, 
we demonstrated our dynamic scheduler’s versa‑ 
tility, which can adapt to dynamic device availabi‑ 
lity and tune the execution conϐiguration in a 
timely manner. This adaptability is vital for 
optimizing system performance and ensuring that 
the service‑level objectives are met.

While image classiϐication is a well‑explored and 
commonplace task, it would be of interest for future 
research to shift attention towards other signiϐicant
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tasks, such as speech recognition. Furthermore, the
proposed system could be extended by investigat‑
ing the newchallenges of generative inference tasks,
such as image and text generation, and designing
novel methods in order to enable their deployment
in multi‑device cascade setups.
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